
1© 2016 The MathWorks, Inc.

MathWorks Tools for 

Software-Defined Radios,

Wireless Prototyping and Verification

Houman Zarrinkoub, PhD.

Product Manager

Signal Processing & Communications

MathWorks 

houmanz@mathworks.com



2

Software Defined Radios (SDR) 

Today

Important Tool for 

 Education

 Research

 Development

Set to expand in scope and use

 Internet of Things

 Connected devices

Useful in 

 rapid prototyping of wireless algorithms

 Evaluate radio hardware in real-world 

conditions



3

How to make SDRs ubiquitous for Wireless Prototyping 

 Affordable SDR hardware 

– Sufficient computational power

– Support a range of carrier frequencies & bandwidths

– Support multiple antennas

 SDR software development environments 

– high level of control of the SDR platform

– Exchange data to SDR hardware in real time

 Connectivity to powerful technical computing software

– use reliable software models and tools in experiments

– algorithms, and feature-rich

– Use standard waveforms 



4

Wireless Prototyping 

Who are the users?

 Communications engineer

 RF System engineer

 Test or validation engineer

What do they need?

 End-to-end simulation 

 Design verification

 Real-world over-the-air testing

 Standard-compliant waveforms

Simulate

& Analyze

ImplementPrototype & 

Test

Wireless 

System

Design

Standard-based

system

Multi-domain

system

Algorithm



5

Verification

HW 

Verification
Production

Test

Prototyping & Test

Over-the-Air 

Signals
SDR/FPGA/SoC

IMPLEMENTATION

Model-Based Design: 

As Algorithms move toward Implementations

Modeling and Simulation

MCU DSP FPGA ASIC

VHDL, VerilogC, C++

System Models

(RF and Digital)
Algorithms

Standards

Models

Modeling and Simulation

• Mathematical modeling & algorithm design

• Multi-domain simulation: Digital + RF

• More and more wireless standard models

Prototyping and Testing

• Test with a range of SDR and instrument hardware

• Rapid prototyping with code generation 

Implementation and Verification

• Generate portable, production-ready HDL and C

• Easily allow re-targeting to different hardware 

• Flow to production testing and verification



6© 2016 The MathWorks, Inc.

Use Case

Waveform Generation

Testing & Verification



7

Over-the-air testing

Input 

bits 

Antenna 

Array

(MIMO)

Channel

Coding &

Modulation

Multi-

carrier 

Transmitter

Transmitter

Receiver

De-

Modulation 

& Channel 

Decoding

Equalizer
Channel 

estimation

Output 

bits 

Source 

Coding

Source 

Decoding

Channel

Noise

Large-scale 

fading

(path-loss …) 

Small-scale 

fading

(Multipath, 

Doppler effects) 

Interference

Over-the-air

Transmission 

&

Reception

LTE or WLAN

LTE or WLAN

Time & 

Frequency 

offset 

detection/

Compensation

End-to-end simulation 

Algorithm/IP



8

Physical connectivity to radio hardware



9

Software setup: Hardware support packages



10

Exchange data between host computer and radio hardware

data

cfg = wlanVHTConfig;

data = wlanWaveformGenerator(bits, cfg);



11

Hardware & Radio Connectivity

Generate 

custom

waveforms

Transmit with 

SDR devices 

or RF instruments

Capture signals 

with SDR 

or instruments

Recover

original data

RF Signal Generator

Spectrum Analyzer

Zynq Radio SDR

USRP SDR

Range of supported hardware



12

Supported SDRs & RF instruments

RF Signal Generator

Zynq Radio SDR

USRP SDR

RF Spectrum Analyzer

Zynq Radio SDR

USRP SDR

RTL SDR

Transmitter Receiver



13© 2016 The MathWorks, Inc.

Use Case

H/W Prototyping

Implementation



14

Verification

HW 

Verification
Production

Test

Prototyping & Test

Over-the-Air 

Signals
SDR/FPGA/SoC

IMPLEMENTATION

Model-Based Design: 

As Algorithms move toward Implementations

Modeling and Simulation

MCU DSP FPGA ASIC

VHDL, VerilogC, C++

System Models

(RF and Digital)
Algorithms

Standards

Models

Modeling and Simulation

• MATLAB has a widespread use in algorithm design

• Used also for multi-domain simulation: Digital + RF

• Increasingly provides wireless standard models

Prototyping and Testing

• Test with a range of SDR and instrument hardware

• Rapid prototyping with code generation 

Implementation and Verification

• Generate portable, production-ready HDL and C

• Easily allow re-targeting to different hardware 

• Flow to production testing and verification



15

Implementation-ready Algorithms: fixed-point

Fixed-point numerics

for every signal



16

Fixed-point algorithm design

1. Set-up simulation flow
2. Express your floating-point algorithm 

– focus on algorithmic integrity, proof of concept
3. Simulate (floating-point) 

– iterate on algorithm trade-offs, validate against requirements

4. Convert design to fixed-point

– Focus of design viability based on implementation constraints 

5. Simulate (fixed-point)

– iterate on implementation trade-offs, validate against original 
requirements 

6. Generate code for implementation

7. Validate and verify design after deployment

C/C++

RTL



17

Use automatic fixed-point conversion tools

Automatic/supervised 

fixed-point conversion 

tools



18

Implementation-ready Algorithms: timing & parallelism

Include timing/latency 

into your design



19

Target your SDR for HDL Code Generation



20

HDL Workflow Advisor

Program FPGA

Physical Design and Critical Path Highlighting

Generate HDL Code

Prepare Model For HDL Code Generation

Select ASIC, FPGA, Or FPGA Board Target



21

SDR Hardware Verification and Prototyping

• Requirements 

• Hardware testbed to verify designs with live radio 

signals

• Support for a slew of waveforms

• Support for standards such as LTE & Wi-Fi

• Quick prototyping on SDR

• Incremental implementation of algorithms 

operating on baseband signal

• Speed/size/memory assessment & optimization

• Ultimately porting entire transmitter or receiver 

algorithms on FPGA 



22

Paving the way for the future

• Same algorithm no longer manually implemented for each target platform

• Re-targeting

• Represent it such that it is ported automatically on various SDRs

• System-level modeling

• Integrate all low-level implementation details (fixed-point, latency, …) into 

System model

• Elaborate system model and verify in software before targeting the 

hardware

Main goal

• Automatic porting/prototyping of algorithms to multicore devices of 

heterogeneous nature


